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Abstract—Long Range-Frequency Hopping Spread Spectrum
(LR-FHSS) is a novel wireless communication technology to
improve the coverage of Low-Power Wide-Area Network (LP-
WAN). But our measurement finds that given the same set of
sub-channels, different Frequency Hopping Sequence (FHS) can
result in a reliability difference of up to 52.6% in terms of
Packet Reception Rate (PRR). The key observation indicates
that the reliability of LR-FHSS is significantly influenced by the
FHS besides the link quality. Hence, in this paper, we propose
DFH that takes both link quality and FHS into consideration
to improve the reliability of LR-FHSS. We first propose using
the hop Signal-to-noise Ratio (SNR), a new indicator to reflect
the quality of the sub-channels and establish the PRR prediction
model according to hop SNR and FHS. Based on the model,
we design an interleaving-based search algorithm to decide
the optimal FHS. We implement and evaluate DFH on the
commercial transceivers and SDR-based gateway. The results of
experiments in real environments show that DFH can improve
the PRR by up to 2.76×, compared to the standard LR-FHSS.

Index Terms—LR-FHSS, frequency hopping sequence.

I. INTRODUCTION

In the past decade, various wireless communication tech-

niques have been widely used in both indoor and outdoor

environments [1]–[3]. In the complex indoor environments

where links are severely blocked by the wall, traditional short-

range techniques such as WiFi and Bluetooth have limited

communication distance and reliability. To well support indoor

applications such as environmental monitoring [4], [5] and

localization service [6]–[8], recent studies try to deploy LoRa

to support communications in large buildings with complex

indoor environments. As shown in Fig. 1(a), LoRa utilizes the

Chirp Spread Spectrum (CSS) modulation that maps the data

symbol to the initial frequencies of a liner chirp. However,

existing studies show that the performance of LoRa is also

unsatisfied in complex indoor environments [9]–[12].

To cope with the performance degradation of LoRa,

Semtech proposes Long Range-Frequency Hopping Spread

Spectrum (LR-FHSS), a novel wireless communication tech-

nology to further increase wireless coverage and support

reliable communication networks. Different from LoRa which

uses CSS, the key feature in LR-FHSS is using frequency

hopping spread spectrum which has been proven to be able

to achieve reliable communication under interference [12].

Specifically, LR-FHSS divides the whole data symbols into

multiple segments and transmits them in different frequencies,
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Fig. 1: Time-frequency signal of LoRa and LR-FHSS.

as shown in Fig. 1(b). Each packet contains headers and

payloads in different hops. Each hop is in a sub-channel

with the bandwidth as narrow as 488Hz, which is much

less than LoRa whose bandwidth is 7.81-500kHz. Given

the same transmission power, the narrower bandwidth can

well concentrate the energy and achieve better ability of

penetrable communication. Hence, LR-FHSS can maintain

reliable long-range communication in indoor scenarios. The

Operating Channel Width (OCW) in Fig. 1(b) defines the

bandwidth of whole sub-channels. The order of sub-channel

used for all hops is denoted as Frequency Hopping Sequence

(FHS). In each hop, LR-FHSS implements Gaussian Minimum

Shift Keying (GMSK) to modulate each symbol.

Though promising, our real measurement study finds that

LR-FHSS is still seriously influenced by dynamic interference

in sub-channels. But directly using existing methods to resolve

interference is not suitable for LR-FHSS. The frequency

hopping in existing wireless techniques such as Bluetooth and

Time Slot Channel Hopping (TSCH) is packet-level hopping,

which means that the completed packet is transmitted in each

channel. The decoding result of each packet only depends

on the quality of the transmitted channel. But for LR-FHSS

whose frequency hopping occurs within each packet as shown

in Fig. 1(b), only a part of the packet is transmitted in each

hop. The transmission of each hop affects the final decoding

result of the whole packet. From our experiments, we observe

that nodes transmitting in the same group of sub-channels

but using different FHS have significantly different reliability

performances. The key reason is that different FHS will cause

different error patterns of symbols after the deinterleaving of



LR-FHSS. If the error symbols are bursty, the Forward Error

Correction (FEC) will fail and the packet will be dropped.

Hence, existing adaptive hopping studies that only consider

the channel quality are not enough for LR-FHSS, and selecting

the optimal FHS under dynamic interference is also necessary.

However, to adaptively decide FHS in LR-FHSS, we still

face three key challenges. First of all, we need a metric that

can reflect the quality of each sub-channel while existing link

quality is measured in packet-level granularity. How to identify

the suitable metric to achieve fine-grained estimations in each

sub-channel is unknown. Furthermore, due to the ignorance of

FHS in existing methods, the relationship between FHS and

reliability is still unknown. A model that describes the rela-

tionship is necessary for following optimization but missing

in the literature. Finally, the selection of optimal FHS is an

NP-hard problem because the relationship between different

FHS and Packet Reception Rate (PRR) is non-linear caused by

interleaving and convolution encoding process in LR-FHSS.

How to online obtain the optimal FHS is also challenging

under highly dynamic channels.

To solve these challenges, we propose DFH, a dynamic

frequency hopping method for LR-FHSS that takes both link

quality and FHS to improve the transmission reliability in

dynamic environments. Firstly, we adopt hop Signal-to-noise

Ratio (SNR) instead of the packet’s SNR used in existing

methods to indicate fine-grained conditions in sub-channels.

Secondly, to establish the model between hop SNR, FHS,

and PRR, we first establish the model between hop SNR

and Symbol Error Rate (SER) and then propose a Monte

Carlo based simulation to predict PRR based on the hop SER

and FHS. Furthermore, we carefully select the parameters

to achieve a good balance between prediction accuracy and

overhead. Finally, to online select optimal FHS, we propose

an interleaving-based search algorithm to reduce the candidate

FHS and speed up the process.

The contributions of this work are summarized as follows:

• We propose DFH, a novel method that dynamically

adjusts the FHS, instead of simply blacklisting the poor

channels, to improve the reliability of LR-FHSS.

• We propose a model to predict LR-FHSS PRR based on

hop SNR and FHS. We also design an interleaving-based

search algorithm to quickly decide optimal FHS.

• We implement DFH on the commercial equipment

SX1262 node and SDR-based gateway and evaluate DFH
in the real deployed environment. The experimental re-

sults show that DFH improves the PRR by up to 2.76×,

compared to the standard LR-FHSS.

II. RELATED WORK

In this section, we first discuss the existing adaptive fre-

quency hopping methods in other wireless systems and then

the dynamic control methods in LoRa networks.

A. Adaptive Transmission in Frequency Hopping System

For frequency hopping systems, there are many studies

focusing on adaptively selecting parameters for transmission.

They adopt the blacklist-based methods which identify poor

channels by different indicators and block poor channels in

use. In Bluetooth, the standard Adaptive Frequency Hopping

(AFH) [13] and methods in [14], [15] rely on Packet Deliv-

ery Ratio (PDR) or the Received Signal Strength Indicator

(RSSI) to estimate channels and block channels with higher

interference. In system using TSCH, RSSI [16]–[19] and PDR

[20]–[22] are used to indicate channel quality and disable

poor channels in use. There are also some studies using

machine learning to estimate channels. Authors in [23] adopt

reinforcement learning to self-supervised deep learning to

predicate future link quality, respectively.

These methods are not suitable for LR-FHSS to enhance

reliability. On the one hand, the frequency hopping in Blue-

tooth and TSCH is packet-level hopping. A complete packet

is transmitted in each hopping channel. The decoding result

of a packet only depends on the quality of the specific

used channel. But for LR-FHSS, the data payload is divided

into multiple segments and transmitted in different channels.

Besides the channel quality, the FHS of hops also affects

the error pattern in the received packet. Hence, the above

methods that don’t consider the FHS are inefficient for LR-

FHSS. On the other hand, LoRaWAN supports a large number

of nodes connecting one gateway, blacklist-based methods will

cause multiple nodes to select the same group of channels

for transmission. Then serious collisions of packets cause the

degradation of overall channel capacity.

B. Adaptive Transmission in LoRaWAN

There are many studies focusing on improving LoRaWAN’s

performance. Authors in [24]–[26] resolve the dynamic link

caused by the attitude changing of nodes. Authors in [27]–

[31] resolve the packet collisions to improve network capacity

in LoRaWAN. Standard LoRaWAN adopts Adaptive Data

Rate (ADR) [32] to dynamically select the data rate and

Transmission Power (TP) according to the link quality for a

device. Recent works focus on the dynamic control of LoRa

transmission parameters to improve energy efficiency and

reliability. DyLoRa [33] establishes an energy efficiency model

to adjust transmission parameters such as TP and Spreading

Factor (SF). To gauge the quality of the link, DyLoRa utilizes

the average SNR from a pre-determined number of recent data

packets. In [34], the authors put forward an ADR algorithm

centered around SNR. They estimate the SNR threshold for

each SF, following which the algorithm assigns the minimum

SF as per the given threshold. AdapLoRa [35] dynamically

allocates SF and TP parameters based on the ever-changing

link conditions. EARN [36] leverages an adaptive SNR margin

to cope with dynamic link changes. It also formulates link

performance as an Energy Per Packet (EPP) model to strike a

balance between the delivery ratio and energy consumption.

However, none of the existing methods take the FHS into

consideration. By our measurement, the LR-FHSS packets

with similar SNR but different FHS have a significantly differ-

ent bit error rate. Using packet’s SNR only cannot accurately

reflect the transmission reliability. Additionally, for LR-FHSS,
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Fig. 2: Workflow of LR-FHSS transceivers.
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Fig. 3: Indoor LR-FHSS and LoRa performance comparison.
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Fig. 5: PRR under different FHS.

blindly adjusting the transmission parameters such as TP is

inefficient due to the ignorance of FHS.

III. BACKGROUND AND MOTIVATION

In this section, we first introduce the background knowledge

of LR-FHSS and then show the influence of FHS on LR-FHSS

to motivate our work.

A. Background of LR-FHSS

Fig. 2 shows how an LR-FHSS transmitter works. Given

the 0/1 bit stream, LR-FHSS first performs data whitening

to eliminate data correlation. Then, it adds additional bits to

achieve Cyclic Redundancy Check (CRC). Next, convolutional

code is implemented to provide FEC, with available Coding

Rate (CR) of 1/3 or 2/3. After encoding, the data stream will

be interleaved, which scatters adjacent data blocks to cope

with burst symbol errors. Then, LR-FHSS divides the whole

symbol stream into multiple 50-bit segments, each segment is

transmitted in one hop. After that, LR-FHSS decides the sub-

channel to be used by each hop. The occupied bandwidth of

each sub-channel is denoted as OBW which equals 488Hz.

The number of sub-channels depends on OCW which can be

configured to 137kHz, 336kHz, and 1.5MHz. The order of

sub-channels used by hops is represented by FHS. Standard

LR-FHSS randomly selects the FHS for each transmission.

Then, LR-FHSS performs GMSK modulation and sends the

signals by the front end.

We investigate the performance of LR-FHSS and LoRa

in the indoor environment to show LR-FHSS has a better

ability for penetrable communication. For LR-FHSS, the OCW

and CR are configured to 137kHz and 1/3. The bandwidth

and SF of LoRa are 125kHz and 12 which provides the

longest communication distance in LoRaWAN. The CR of

LoRa is configured to 4/5. The transmission power and central

frequency of the two techniques are 14dBm and 868MHz.

For fairness, we implement the SDR-based gateways of LR-

FHSS and LoRa to decode packets.

Fig. 3 presents the results. As shown in Fig. 3(a), the PRR

of LoRa suffers from serious degradation when penetrating 4

walls. But LR-FHSS can achieve a high PRR of 0.99 even

through 10 walls. We also demonstrate LoRa and LR-FHSS

when passing different numbers of floors. In Fig. 3(b), when

being blocked by 2 floors, LoRa only achieves PRR of 0.68,

which is 30.6% lower than LR-FHSS. The PRR of LoRa is

close to 0 when passing 3 floors while LR-FHSS can still

achieve PRR of 0.17. The results show that LR-FHSS has

better communication reliability in indoor scenarios.

B. Motivation

Our measurement of the LR-FHSS network deployed in a

teaching building on campus finds that the dynamic inter-

ference in the channel seriously degrades the reliability of

transmission. The LR-FHSS node works in the EU 868MHz
frequency band with CR=1/3 and OCW=137kHz. A node

sends packets of length 20-byte every 15 seconds. We im-

plement an SDR-based gateway to decode packets. The node

and the gateway are separated by 6 walls with a distance

of 60m. We measure the SER and the SNR and plot the

results in Fig. 4. We can find that in [100s, 200s] the average

SER is 0.21, which is 7.14× higher than the average SER
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in [200s, 300s]. This is because there are people moving

around during [100s, 200s], blocking the link and resulting in

a decrease in overall SNR, while during [200s, 300s], there are

no people moving, resulting in a higher SNR for the packet.

The result shows though LR-FHSS has better reliability, it is

still influenced by link dynamics.

But existing studies are inefficient in LR-FHSS because they

only focus on selecting channels with good quality but do not

adjust the FHS which also affects the reliability. We control

channel interference to ensure that the packet’s SNR varies

between 6.9dB and 11dB while other configurations are the

same as the experiment in Fig. 4. Each packet has 12 hops

transmitted on 12 sub-channels, as shown in Fig. 6. We add

interference in the first three sub-channels. Then FHS can be

expressed as FHS = [hop1, ..., hop12], where hopi indicates

that the i-th hop is transmitted on the hopi sub-channel. We

randomly select three FHS and direct the node to transmit

using the same group of sub-channels. FHS1=[4 10 1 7 11 2
6 3 9 12 5 8], FHS2 = [1 9 5 6 11 7 2 3 8 10 12 4], and FHS3

= [10 5 2 3 6 12 1 11 9 7 4 8], where the bold hop id is the

sub-channels under interference. In Fig. 5(a), we demonstrate

the PRR corresponding to each FHS under different packet

SNR. The result shows that the FHS will significantly affect

the reliability of LR-FHSS.

Furthermore, we traverse all possible FHS and identify the

optimal and worst FHS that can bring the highest and lowest

PRR are shown in Fig. 5(b). The optimal FHS is [1 12 5

8 2 7 10 3 9 6 11 4] and the worst FHS is [6 7 12 9

8 5 1 2 3 10 4 11]. The average PRR of optimal FHS is

0.89, which is 30.9% higher than the PRR of worst FHS.

The reason is that using different FHS for the same sub-

channels generates different distributions of symbol errors,

affecting the error correction performance of Viterbi decoding

in LR-FHSS. Fig. 6 shows an example, after receiving the

signal, the receiver first performs GMSK demodulation and

obtains the symbols. The SER is similar because packets

are transmitted by the same sub-channels. However, after

deinterleaving, symbol errors of the two symbol streams that

use different FHS have different distributions. The symbol

errors in Fig. 6(a) are more concentrated than symbol errors in

Fig. 6(b). The burst errors will be beyond the ability of error

correction in convolutional codes and cause more packet loss.

The above analysis motivates us to enhance the reliability of

LR-FHSS by focusing on the selection of FHS.
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Fig. 7: Overview of DFH.

IV. DESIGN

In this section, we first present an overview of DFH and

then introduce the design details of each component.

A. Overview

Fig. 7 shows the framework of DFH which consists of three

main components. When one LR-FHSS packet is received,

DFH first calculates the SNR of each hop from the I/Q samples

and estimates the corresponding SER of each hop. Then DFH
decides the parameters of generating FHS based on the hop

SER, including the number of bad sub-channels, interleaving

width, and step size. After obtaining the set of candidate

FHS by the interleaving-based algorithm, DFH predicts the

PRR based on the estimated SER and all the candidate FHS.

For each candidate FHS, the PRR prediction component first

generates the error distribution according to the hop SER, then

employs the Monte Carlo based method to predicate PRR for

each FHS. Finally, DFH regards the FHS which has the highest

predicated PRR as the optimal FHS, and sends it to the end

device via downlink. Then the following transmission can use

the new FHS to improve reliability.

B. Channel Estimation

To indicate the quality for each sub-channel, we use the

fine-grained hop SNR as the indicator. Using hop SNR brings

two benefits: firstly, we can obtain the channel condition in

sub-channels by only receiving one packet, which can quickly

adapt to highly dynamic interference. Secondly, compared

with the packet’s SNR, using hop SNR can help DFH achieve

fine-grained estimation for each sub-channel. When the gate-

way receives the LR-FHSS packet, DFH decodes the packets

and then calculates the SNR of each hop, which we denote as

SNRn for the n-th hop. The total number of hops in a packet

is represented by N .

After obtaining the indicator, we need to estimate the SER

of hop in each sub-channel. The SER is used to select FHS

and predict the PRR in the following module.

LR-FHSS employs 2-GMSK modulation with a Bandwidth-

Time product of 1. According to existing studies, the theoreti-

cal model [37] depicting the relationship between SNRn and

SERn can be represented by

SERn =
1

2
e−α·10SNRn/10

(1)

where α depends on the Bandwidth-Time product of GMSK,

for LR-FHSS, α is set to 0.8.
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To demonstrate the efficiency of the theoretical model, we

gather data via our implemented gateway. We collect LR-

FHSS packets in an indoor environment. We change the

distance between the gateway and the node from 10m to

100m. The node sends 20-byte packets at a center frequency

of 868MHz, with OCW, CR, and TP of 137kHz, 1/3, and

14dBm, respectively. We calculated the actual SER of the

packet and compared it with the theoretical model. As shown

in Fig. 8, the distance exists between the theoretical model

in the blue line and the actual SER in purple points. So,

we introduce an offset δ and our model in red line can be

represented by:

SER
′
n =

1

2
e−α·10(SNRn+δ)/10

(2)

The value of δ depends on the environment. To obtain δ,

we first receive packets in different SNR and calculate the

corresponding SER. Then we obtain the optimal δ which can

minimize the estimation error between estimated SER and

actual SER by following the equation,

argmin
δ

|SERr − SER
′
n| (3)

where SERr is the actual SER calculated by received packets

in the real environment. δ in our environment is 2.9dB.

C. FHS Selection

To select an optimal FHS under dynamic channel condi-

tions, we first model the selection of optimal FHS as bipartite

graph matching. Selecting FHS can be seen as establishing

a mapping relationship between frequency hops and sub-

channels. One FHS represents one matching within the com-

plete bipartite graph. The essence of this approach is to

interpret frequency hopping as a mapping or matching process

between two distinct but interconnected entities (frequency

hops and sub-channels). Next, we define what is the ”optimal”

FHS. The optimal FHS is a bipartite matching that successfully

maximizes a specific defined objective function. The objective

function represents the expected result or objective in a math-

ematical model, which is the predicated PRR in this case.

Specifically, we consider a complete bipartite graph G =
(H,C,E), where H = {h1, · · · , hN} is the set of available

hops, C = {c1, · · · , cN} is the set of available sub-channels

Hop

Sub-CH

h1 h2 h3 h4 h5

c1 c2 c3 c4 c5

Fig. 9: A matching of the complete bipartite graph.

and E is the edge of graph. If π = {π(1), · · · , π(N)} is a

permutation of {1, · · · , N}, then a matching of G is

m = {(h1, cπ(1)), · · · , (hN , cπ(N))}
(hi, cπ(i)) ∈ E, 1 ≤ i ≤ N

(4)

where cπ(i) represents the sub-channel matched by i-th hop.

Fig. 9 shows a matching of the complete bipartite graph G.

According to the previous description, the selection of the

optimal FHS can be modeled as a complete bipartite graph

maximum matching problem, with the PRR as the objective

function. However, it’s important to note that the weight of this

objective function is not linearly accumulated but rather varies

with the matching, resulting in an NP-hard problem [38]–[40].

The traditional solution to the NP-hard problem is Simulated

Annealing Algorithms (SAA) [41]. However, existing studies

[42], [43] show that the SAA has a slow convergence speed,

so it is not suitable for selecting optimal FHS online.

In Section III-B, different FHS result in varying sequence

error patterns input into the Viterbi decoder after demodulation

and interleaving, leading to different PRR. By analyzing the

optimal and worst FHS, we find that the worst FHS causes the

hops in poor sub-channels to approach each other after dein-

terleaving, and then more concentrated symbol errors make the

FEC fail. Hence, the optimal FHS means that the symbol errors

can be sparsely distributed after deinterleaving. By analyzing

the detailed process of interleaving and deinterleaving, we

find that the distribution of symbol errors mainly depends

on the distance of hops in poor sub-channels. The distance

between the a-th hop and b-th hop can be calculated by

min(|b− a|, |a+N − b|).
More specifically, if we put neighboring hops in poor chan-

nels, then the symbol errors will be concentrated. Hence, to

maintain symbol errors sparse, we should increase the distance

between hops in poor sub-channels as much as possible.

To select the optimal FHS, we first identify the bad sub-

channels that cause high symbol errors. We determine the

threshold th to decide bad sub-channels dynamically.

th = average(SER) (5)

Then, based on th, we regard the sub-channels which

SER > th as the bad sub-channels, then we can obtain the

number of bad sub-channels Nbad.

Our goal is to make the distance between the frequency

hops allocated to these bad sub-channels sufficiently large. So

we propose the interleaving-based methods where the number



Algorithm 1: Interleaving-based search algorithm

Input:
H: the set of frequency hops.

SER: hop SER.

width: width of interleaving.

step: step of interleaving.

Output:
SFHS : candidate set of FHS.

1 for st in 1 : length(H) do
2 row = �st/width�
3 col = st mod width
4 index = st
5 S = []
6 for i in 1 : length(H) do
7 Si = Hindex

8 row ++
9 index = (row − 1) · width+ col

10 if index > length(H) then
11 col = col + step
12 row = 1
13 if col > width then
14 col = (col mod width) + 1
15 end
16 index = (row − 1) · width+ col
17 end
18 end
19 FHS = Convert(SER, S)
20 SFHS .add(FHS)

21 end

of columns (or the width) width during interleaving equals

Nbad, and the interleaving step size step is set to �width/2�.

Through the interleaving algorithm, we can obtain a sequence

S = [S1, ..., SN ], where Si represents the Si-th hop being

transmitted on the sub-channel corresponding to the i-th SER.

Algorithm 1 shows the workflow of the interleaving-based

algorithm to select a candidate set of FHS. The algorithm

takes as inputs the frequency hops H , the interleaving width

width, and the interleaving step step. The interleaving process

begins, with the starting point of interleaving ranging from 1

to length(H). Points in a sequence can be mapped to row and

column indices and this relationship can be reversed as well.

We begin by initializing the row row, column numbers col,
and the index of sequence index, followed by outputting the

content indicated by index into the S. Subsequently, we shift

the row one level down and infer index to continue outputting.

If the position indicated by index exceeds length(H), col
increases by step. If col surpasses the matrix width, the

interleaving process resumes from the leftmost column that has

not been outputted. Finally, we convert S into FHS through

hop SER SER. Through this procedure, we are able to obtain

a candidate set SFHS of FHS.

Algorithm 2: Monte Carlo based simulation

Input:
SER: hop SER.

FHS: frequency hopping sequence.

Y : reference sequence.

Output:
PRR : predicated PRR.

1 Rpkt = 0
2 for i in 1 : K do
3 Ytmp = Y
4 err index = Random error (SER, FHS)

5 Ytmp = Sym flip (Ytmp, index)

6 D = Deinterleave (Ytmp)

7 if Viterbi (D) is correct then
8 Rpkt++

9 end
10 end
11 PRR = Rpkt/K

D. Prediction Model

After channel estimation and FHS selection, we obtain the

hop SER and a candidate FHS set. Then, for each FHS in

SFHS , we predicate its corresponding PRR and regard the

FHS that has the highest PRR as the optimal FHS in the next

transmission. By the SNR-to-SER model proposed in Section

IV-B, we can obtain the error probability of each symbol

after demodulation and deinterleaving. However, the final PRR

after FEC cannot be directly calculated because the process

of Viterbi decoding used in LR-FHSS relies on maximum

likelihood which is non-linear. Several works [44]–[47] have

proposed methods to calculate the burst error probability after

Viterbi decoding on a binary symmetric channel or an AWGN

channel. However, they can only obtain the lower bound of

PRR instead of the accurate PRR.

To accurately predict the PRR of each FHS in SFHS ,

we propose the Monte Carlo based simulation [48]. Given

the SNR and FHS, we generate multiple possible symbol

sequences that contain different symbol error patterns after

demodulation. Then, we deinterleave them and input them

into the Viterbi decoder. Finally, we calculate the PRR. The

whole process is shown in Algorithm. 2, the inputs contain the

SNR, FHS, and reference sequence Y . Y is used to generate

symbol sequences with different symbol error patterns. We

generate Y by inputting a random payload into the following

processes including whitening, CRC generation, convolutional

encoding, and interleaving.

For each FHS, we generate K symbol sequences to calculate

PRR. In function Random error(), we first calculate the

number of error symbols in each hop according to SER,

and then we randomly select the positions of each error

symbol within the hop. Next, we flip the 0/1 symbol in the

selected position to generate symbol sequences by the function

Sym flip() and input it to deinterleaving and Viterbi decoder.

Finally, we calculate the PRR by the ratio of successfully
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Fig. 10: Trade-off between accuracy and cost.

decoding sequence and whole K sequences.

Then we should select the suitable value of K, too large K
brings higher time consumption and affects online selection.

But if K is too small, the accuracy of PRR prediction will be

low. Hence we need to achieve a good balance between ac-

curacy and overhead. We first collect some LR-FHSS packets

under different SNR in the real environment and decode them

to obtain the actual PRR as the baseline. The corresponding

setting is the same as the experiments in Section IV-B. Then,

we use the Monte Carlo based simulation with different K. We

record the difference between the predicted PRR and the real

PRR as the error and the method’s running time. The results

are shown in Fig 10. It shows that the running time increases

linearly as the increasing number of K. When K > 200, the

error is stable, so K is set to 200 in DFH.

V. EVALUATION

A. Experiment Setting

To demonstrate the performance of DFH, we implement

DFH in an SDR-based gateway and conduct experiments in

a real indoor network consisting of commercial nodes. As

shown in Fig. 11, the gateway uses Hack-RF One as the

front end. We implement the decoding of LR-FHSS and a

prototype of DFH by Matlab. The node consists of SX1262

transceiver and STM32L476RG microprocessor. The node

works in LoRaWAN Class B. After transmitting an LR-

FHSS packet, the node switches to the receiving mode and

listens to the LoRa packet sent by the gateway. The LoRa

packet contains the optimal FHS calculated by the algorithm

in the gateway. Then the node will use the received FHS

for the next LR-FHSS transmission. By default, the OCW,

CR, number of available sub-channels, and payload length of

uplink LR-FHSS transmission are 137kHz, 1/3, 35 and 20-

byte, respectively. Each packet contains 12 hops. The BW, SF,

and CR of downlink LoRa transmission are 125kHz, 9 and

4/8. To avoid interference between uplink and downlink, the

central frequency of LR-FHSS and LoRa are configured to

868MHz and 915MHz.

For comparison, we also implement four representative

methods as baselines. The first one is the standard LR-FHSS

(denoted as Std. FHS) which randomly selects sub-channels

and DFH in each transmission. We also implement LR-FHSS

HackRF

(a) Gateway.

Semtech SX1262

STM32L476RG

(b) LR-FHSS node.

Fig. 11: Experiment equipments.

which uses randomly selected fixed sub-channels and FHS

(denoted as Fixed FHS) for comparison. Third, we implement

ETSCH [18] as the representative of blacklist-based methods.

ETSCH uses the Non-intrusive Channel-quality Estimation

(NICE) technique to decide the blacklist which blocks sub-

channels with poor quality. To cope with the dynamic inter-

ference in unfixed channels, ETSCH will adaptively update

the blacklist before selecting channels used by nodes. We also

implement a method that adaptively adjusts the transmission

power to improve reliability (denoted as TP-method). It relies

on the SNR of the whole packets to select suitable transmission

power. After obtaining the average SNR of the whole packet,

TP-method calculates the expected power which can make

PRR higher than 0.9 according to the model of the packet’s

SNR to PRR which is measured from our real-world network.

In the following, we first demonstrate the performance

of DFH under various types of interference with different

intensities. Then we evaluate the performance of the main

components in DFH. To accurately control the intensity of

the interference, we perform trace-driven simulation. We first

collect the trace which contains real signals of LR-FHSS pack-

ets and interference traces to simulate signals under different

interference conditions. Then we synchronize the signal trace

with interference trace and combine them to generate signals

under interference with different intensities. Besides the trace-

driven simulation, we also conduct real-time experiments to

evaluate DFH in real deployed indoor network that contains

multiple nodes. Finally, we compare the performance of DFH
with ETSCH in large-scale network. We also conduct trace-

driven simulations to emulate the concurrent transmissions by

a large number of nodes.

B. Performance of DFH under Different Interference

The purpose of DFH is to improve the reliability of LR-

FHSS, so we demonstrate the performance of DFH under three

types of interference with different intensities.

1) Different Numbers of Interfering Sub-channels: We eval-

uate the performance of DFH under different numbers and

types of interfering sub-channels. The SNR of each sub-

channel is set to [−1, 1]dB. We change the number of interfer-

ing sub-channels from 2 to 10. The interference contains white

noise, homogeneous interference caused by other nodes that

also send LR-FHSS, and hybrid interference which combines

the above two interference with a mixture ratio of 1:1.
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Fig. 12: Performance of DFH under different numbers of interfering sub-channels.
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Fig. 13: Performance of DFH under different SNR.
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Fig. 14: Performance under different transmission power.

In Fig. 12, we can find that the PRR of DFH is higher

than the other two methods under three different interference.

Under white noise, when the number of interfering sub-

channels changes from 2 to 10, the PRR of DFH decreases

from 1.00 to 0.27 because of the increase of SER caused by

noise. When the number of interfering nodes is 10, the PRR of

DFH is 0.27, which is 1.69× and 2.18× higher than Std. FHS

and Fixed FHS. Under homogeneous interference, compared

with Std. FHS and Fixed FHS, DFH can improve the PRR

by up to 79.3% and 78.5% when the number of interfering

sub-channels is 8. Then, under hybrid noise, the average PRR

of DFH is 0.70, which is 14.5% and 16.5% higher than Std.

FHS and Fixed FHS.

2) Different SNR: Then, we demonstrate the performance

of DFH under different SNR. We randomly select 6 sub-

channels and add interference to them.

The results are shown in Fig. 13. Under white noise, with

the change of SNR from −2dB to 2dB, the PRR of all three
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Fig. 15: Performance under same transmission power.

methods increases. When the SNR is −2dB, DFH improves

the PRR by 2.76× and 3.81× compared to Std. FHS and Fixed

FHS, respectively. Under homogeneous interference, the PRR

of DFH is also higher than the two methods. DFH can achieve

the average PRR of 0.57 when SNR is lower than 0, which is

35.6% and 61.0% higher than Std. FHS and Fixed FHS.

C. Energy Efficiency of DFH
We also conduct experiments to show the energy efficiency

of DFH. The number of interfering sub-channels is set to 6.

We demonstrate the PRR under white noise interference with

different SNR levels and calculate the energy efficiency. As

shown in Fig. 14, DFH has a similar performance of PRR

with TP-method, the average PRR of DFH and TP-method

method is 0.84 and 0.85, respectively. However, TP-method

brings more energy consumption due to the increasing power

of transmission. The medium energy efficiency of DFH and

TP-method is 3.18bit/mJ and 0.54bit/mJ . DFH can achieve

average efficiency of 2.98bit/mJ , which is 5.20× larger than
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Fig. 16: Performance of DFH under different CR and OCW.
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Fig. 17: Accuracy of channel estimation module and PRR

inference module.

TP-method. It shows that our method can significantly increase

the battery life of nodes.

Furthermore, we also compare DFH and TP-methods under

the highest transmission powers. In this case, TP-method

cannot further increase transmission power. As shown in

Fig. 15(a), when the SNR is −2dB, the PRR of DFH is

0.83, which is 59.2% higher than TP-method. Meanwhile,

in Fig. 15(b), the medium energy efficiency of DFH and

TP-method are 0.51bit/mJ and 0.44bit/mJ because DFH
can achieve high PRR under same energy consumption. The

experimental results show that DFH can significantly improve

reliability and reduce energy consumption.

D. Performance under Transmission Parameters

We compare the performance of DFH and Std. FHS under

different CR and OCW.

1) Different CR: We evaluate the impact of CR on perfor-

mance with the OCW of 137kHz under white noise interfer-

ence. We add white interference in the half number of occupied

sub-channels. Fig. 16(a) and (b) illustrate the CDF of the PRR

for the two methods under CR = 1/3 and CR = 2/3. For

DFH, the PRR under CR = 1/3 and CR = 2/3 is 0.91 and

0.68 because lower CR brings more redundant bits for error

correction. For Std. FHS, the medium PRR under CR = 1/3
and CR = 2/3 are 0.85 and 0.58. Both in CR = 1/3 and

CR = 2/3, the PRR of DFH is higher than Std. FHS.

2) Different OCW: Fig. 16(a) and (c) present the CDF of

the PRR for the two methods under different OCW. When the

OCW is 336kHz, the average PRR of DFH and Std. FHS is

0.93 and 0.85, which is 2.7% and 2.6% higher than it under
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137kHz. This is because a wider bandwidth provides more

available channels, reducing the likelihood of interference

from adjacent sub-channels.

E. Performance of DFH ’s Components

Then, we conduct experiments to evaluate the efficiency

of the main components of DFH. We evaluate DFH under

three types of interference, the detail setting is same with

experiments in SectionV-B.

1) Channel Estimation Module: To demonstrate the ac-

curacy of hop SER estimation, we calculate the CDF of

estimation error which is defined by the |SERe − SERr|
where SERe represents the estimated hop SER by our module

and SERr represents the real measured hop SER. As shown

in Fig. 17 (a), the errors mainly locate in [0, 0.15], the medium

error is 0.02 and the average error is 0.03, which shows that

our method can achieve relatively high accuracy.

2) PRR Inference Module: Then, we evaluate the accuracy

of PRR inference. We calculate the CDF of estimation error

which is defined by the |PRRe − PRRr| where PRRe

represents the predicted PRR by our module and PRRr

represents the real measured PRR. As shown in Fig. 17 (b),
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the errors are primarily concentrated in the range of [0, 0.2],
the medium error is 0.03 and the average error is 0.04, which

can help us select the optimal FHS.

3) FHS Selection Module: In order to evaluate the effec-

tiveness of the FHS selection algorithm, we compared our

method with SAA. According to existing methods [49], [50],

the initial temperature Tb, the final temperature Te, the cooling

rate β, and the number of iterations for each temperature t of

the SAA are set to 100, 20, 0.8, and 50. The running rounds

required for the two methods to achieve convergence are

shown in Fig 18 (a), DFH can achieve average running rounds

of 7.72, which is 97.6% lower than SAA. The medium running

rounds of DFH and SAA are 6 and 341 respectively. It shows

that our interleaving-based method can significantly reduce

time consumption and cope with highly dynamic channels.

Fig. 18(b) shows the CDF of PRR corresponding to the

selected optimal FHS for DFH and SAA. The medium PRR

of DFH and SAA is 0.72 and 0.75. The average PRR of DFH
is 0.65, which is 2.5% lower than the SAA. The result shows

that our interleaving-based method basically achieves the same

effect as the SAA.

F. Performance in the Real Deployed Network

We further evaluate DFH in a real deployed indoor network.

We deploy five nodes in five different locations as shown

in Fig. 19. According to the specification of LoRaWAN,

five nodes adopt naive ALOHA that randomly accesses the

channel. We also deploy one interferer which uses SDR

to generate dynamic white noise interference. The interferer

randomly interferes 10 sub-channels among 35 sub-channels

and sets the transmission power in each sub-channel varying in

[−3, 3]dBm. The period of the interferer switching to different

sub-channels and transmission power is 30 seconds. The SNR

of received packets in five locations after adding interference

is shown in Fig. 20(a).

We first show the performance of three methods using the

maximum duty cycle in LoRaWAN, 10%. As illustrated in

Fig. 20(b), for all methods, the node in location 3 has the

lowest PRR among five nodes because it suffers from the

serious hindrance of 3 walls and has the lowest SNR. The

average PRR of DFH and ETSCH is 0.86 and 0.85 which

is 26.7% and 25.1% higher than Std. FHS. The above result

shows that DFH and ETSCH have similar performance in low

concurrency scenarios.

Furthermore, we demonstrate the performance of three

methods under high concurrency scenarios. We increase the

duty cycle of each node to 70%, which can significantly

increase the probability of packet collisions. As shown in

Fig. 20(c), the average PRR of DFH is 0.73, which is 60.5%

and 42.7% higher than ETSCH and Std. FHS. The perfor-

mance of ETSCH suffers from serious degradation because

it adopts blacklist-based method which only considers the

channel quality and pushes multiple nodes to select the similar

good sub-channels for transmission, aggravating the packet

collisions. Then serious transmission collisions of the used

hops occur and cause more decoding errors.

Fig. 21 shows PRR changes for node 4 under dynamic

interference. Under medium interference where we set the

transmission power of the interferer to 0dBm, the average

PRR of DFH is 0.89, which is 59.9% higher than Std. FHS.

When the interference decreases to the low level where the

transmission power of the interferer equals −3dBm. The

average PRR of DFH and Std. FHS is improved to 0.95 and

0.86 due to the high SNR within sub-channels. When the

interference increases to a high level where the transmission

power of the interferer equals 3dBm, the average PRR of Std.

FHS is reduced to 0.32. Thanks to the rearrangement of FHS in

DFH to adapt to dynamic interference, DFH can still achieve

the average PRR of 0.57, which is 78.1% higher than Std.

FHS. The result shows that DFH can improve the reliability

of LR-FHSS under dynamic interference.

G. Performance in Large-scale Networks

Furthermore, we compare the performance of DFH and

existing methods in large-scale networks where extensive de-

vices connect with one gateway, which is a typical application
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Fig. 22: Performance under Large-scale Network.

scenario of LPWAN. We conduct trace-driven simulations to

investigate the performance of different methods in large-

scale networks. We first collect traces of real signals by SDR.

We collected 30 traces in 30 different locations. The SNR

of received packets in different locations varies in [1, 15]dB.

Each trace contains 50 LR-FHSS packets with random 20-byte

payloads. Each packet first repeats transmitting the headers

three times in three randomly selected sub-channels, and then

randomly selects 12 sub-channels within 35 sub-channels as

the 12 payload hops for payload transmission.

In the evaluation, when the number of nodes is smaller

than 30, we only use the real collected trace to obtain the

experimental results; when the number of nodes exceeds 30,

we perform the trace-driven simulation to investigate the

performance. When more nodes are added to the network,

we generate more traces based on our collected traces. For

packets transmitted from each location, We divide the original

signals of the header and payload hops into two repositories

respectively. The newly added node randomly selects one

location for transmission. Then we randomly select header

and payload hops from corresponding repositories to generate

the packet and randomly configure the initial FHS of the

packet. According to the duty cycle, we can calculate the

number of packets expected to be transmitted within a given

period. We also randomly set the arrival time of each packet to

simulate naive ALOHA. Then we execute different methods to

decide the next FHS for each node to obtain the transmission

performance of different methods.

Fig. 22(a) illustrates the throughput of DFH and ETSCH

under duty cycle of 1%. When the number of nodes is smaller

than 27, DFH and ETSCH can achieve similar PRR. However,

when more nodes concurrently transmit, the throughput of

ETSCH suffers from serious degradation. When 28 nodes

transmit in the network, DFH can achieve the throughput

of 163.0bps, which is 31.0% higher than the throughput of

ETSCH. The reason is that ETSCH directly blocks the sub-

channels with poor quality. Then the number of available sub-

channels significantly decreases and the probability of packet

collisions increases. Serious collisions cause more packet loss.

Different from ETSCH, DFH only adjusts the order of using

sub-channels. The sub-channels with poor link quality are also

utilized. The number of available sub-channels is not reduced.

Even when the number of nodes increases to 210, DFH can

still achieve a throughput of 121.2bps, which is 4.41× higher

than the throughput of ETSCH.

Furthermore, when the duty cycle of each node increases to

10%, DFH can achieve even better performance than ETSCH,

as shown in Fig. 22(b). The higher duty cycle causes more

collisions under the same number of nodes. When the duty

cycle increases from 1% to 10%, the number of supported

nodes when achieving maximum throughput of DFH and

ETSCH decreases from 29 and 28 to 26 and 25. The throughput

improvement of DFH increases from 1.54× to 2.26× when

the duty cycle increases from 1% to 10%. The reason is

that ETSCH only considers the channel conditions and blocks

poor channels, which makes multiple nodes use similar sub-

channels. The packet collisions are aggravated under the higher

duty cycle. DFH combines both channel quality and FHS to

select sub-channels, which reduces the impact of collisions.

VI. CONCLUSION

In this paper, we propose DFH, a dynamic frequency hop-

ping method of LR-FHSS to improve transmission reliability

in dynamic environments. Our in-depth study reveals that the

reliability of FHS is not only affected by channel quality

but also depends on the FHS. To select the optimal FHS

under dynamic link quality, we first define the hop SNR as

the new metric to indicate fine-grained channel quality. Then,

we established a model based on both hop SNR and FHS to

estimate the transmission performance of LR-FHSS. To online

select optimal FHS, we design an interleaving-based search

algorithm that reduces the time consumption in searching

optimal FHS. The experimental results show that DFH can

improve the PRR by up to 2.76×, compared to the standard

LR-FHSS.
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